CHAPTER 6

TURING MACHINES

6.1 INTRODUCTION

In this chapter we investigate a third type of recognizing device, the Turing
machine. The Turing machine has been proposed as a mathematical model
for describing procedures. Since our intuitive notion of a procedure as a
finite sequence of instructions which can be mechanically carried out is not
mathematically precise, we can never hope to show formally that it is equiva-
lent to the precise notion of a Turing machine. However, from the definition
of a Turing machine, it will be readily apparent that any computation that
can be described by means of a Turing machine can be mechanically carried
out. Thus the definition is not too broad. It can also be shown that any
computation that can be performed on a modern-day digital computer can
be described by means of a Turing machine. Thus if one ever found a
procedure that fitted the intuitive notions, but could not be described by
means of a Turing machine, it would indeed be of an unusual nature since it
could not possibly be programmed for any existing computer. Many other
formalizations of a procedure have been proposed, and they have been shown
to be equivalent to the Turing machine formalization. This strengthens our
belief that the Turing machine is general enough to encompass the intuitive
notion of a procedure. It has been hypothesized by Church that any process
which could naturally be called a procedure can be realized by a Turing
machine. Subsequently, computability by a Turing machine has become the
accepted definition of a procedure. We shall accept Church’s hypothesis and
simply substitute the formal definition of a Turing machine for the intuitive
notion of a procedure.

6.2 DEFINITIONS AND NOTATION

Specifications for the Turing machine have been given in various ways in the
literature. We begin with the discussion of a basic model, as shown in Fig.
6.1. Later we investigate other models of the Turing machine, and show that
all these models are equivalent. The basic model has a finite control, an
input tape which is divided into cells, and a tape head which scans one
cell of the tape at a time. The tape has a leftmost cell but is infinite to the
right. Each cell of the tape may hold exactly one of a finite number of fape
80

6.2 DEFINITIONS AND NOTATION 81

symbols. Initially, the n leftmost cells, for some finite n, hold the input, a
string of symbols chosen from a subset of the tape symbols called the input
symbols. The remaining infinity of cells hold the blank, a special tape symbol
which is not an input symbol.

))) Finite
Fig. 6.1. Basic Turing machine. control

In a move of the Turing machine, depending upon the symbol scanned
by the tape head and the state of the finite control, the machine:

1. changes state.

2. prints a nonblank symbol on the tape cell scanned, replacing what was
written there.

3. moves its head left or right one cell.

Note that the difference between a Turing machine and a two-way finite
automaton lies in the former’s ability to change symbols on its tape.

Formally, a Turing machine (Tm) is denoted T = (K, X, I', 9, 9o, F),
where:

K is the finite set of states.

T is the finite set of allowable tape symbols. One of these, usually denoted
B, is the blank.

3, a subset of I" not including B, is the set of input symbols.

§ is the next move function, a mapping from K x I'to K x (I' — {B}) x
{L, R}t & may, however, be undefined for some arguments.

qo in K is the start state.
F = K is the set of final states.

We denote a configuration of the Turing machine T by (g, «, i). Hereg,
the current state of 7, is in K. « is a string in (I' — {B})* and is the non-
blank portion of the tape. Note that if the tape head ever leaves a cell, it

T We }}ave not allowed a Tm to print a blank for simplicity in defining the con-
ﬁgl}ra‘tlons. However, a Tm could have another symbol which is treated exactly
as if it were the blank except for the fact that the Tm is allowed to print this
Ps§udo blank symbol. Thus, no extra power results if we allow blanks to be
printed. In informal discussion, we often allow the printing of a blank, knowing
that one could use a different, but equivalent, symbol instead.)

82 TURING MACHINES 6.2

must print a nonblank symbol on the cell, so the tape of T will always con-
sist of a block of nonblank symbols (here « is that block), with an infinity
of blanks to the right. Finally, 7 is an integer, the distance of the tape head
of T from the left end of .

We define a move of T as follows. Let (g, 4:A45...4,, i) be a configura-
tion of 7, where l £ i = n + 1. If

1 I=n and 8(‘1» Ai) = 073 Aa R):

IIA

then
(¢ A4z . An, D) [(p, ArAy. . A Adi .. Ay i + D).

That is, T prints symbol 4 and moves right. If
3(g, 4;)) = (p, 4, L) and 251

IIA

n,
then

(9 A1ds. . An, D) (P, Ay . A 1Ay, . Ay i — D).
Here T prints 4 and moves left, but not off the left end of the tape. If

i = n + 1, the tape head is scanning the blank, B. If 8(g, B) = (p, 4, R),
then

(@ 414z . Aps 1 + 1) |7 (9, Asda. . . Ayd,n + 2).
If, instead, &(q, B). = (p, 4, L), then

(¢ Ardz. . . Anyn + 1) |7 (p, 4145 . . A4,).

If two configurations are related by };, we say that the second results
from the first by one move. If one configuration results from another by
some finite number of moves, including zero moves, they are related by the

. £
relation |.

The language accepted by T is the set of those words in * which cause
T to enter a final state when placed, justified at the left, on the tape of T,
with T in state q,, and the tape head of T at the leftmost cell. Formally, the
language accepted by 7 = (K, %, T, §, q,, F) is

{wlw in Z* and (go, w, 1) E(q, o, i) for some g in F, o in I'* and integer i}.

Given a Tm recognizing a language L, we assume without loss of generality
that the Tm halts, i.e., has no next move whenever the input is accepted.
However, for words not accepted, it is possible that the Tm will not halt.

Example 6.1. Consider the following Tm that recognizes the context-free
language L = {0"1*"|n = 1}. Let T = (K, %, T, 8, qo, F). Here,

K= {qo, Gis -5 CIs}, 2= {0 1}5 = {0, la B, X, Y}, F = {q5}a

and & is defined as follows.

6.2

DEFINITIONS AND NOTATION 83

. 8(q0, 0) = (g1, X, R). (T will alternately replace a 0 by X, thena 1 by Y.

In state g,, a O is replaced by an X, and T moves right in state ¢; looking
fora l.)

.a) 8¢1,0) = (41,0, R)

b) 8(qls Y) = (qlv Y, R)

C) 8((]1, 1) = (q25 Yz L)

(T moves right in state ¢; (Rules 2a and 2b). When a 1 is found, it is
changed to a Y, and the state becomes g, (Rule 2¢). In g, we see that T
moves left, looking for a 0 to convert to an X. Moving left, T will en-
counter a block of ¥’s, then, perhaps, a block of 0’s, then an X.)

g a’) 8(42, Y) e (q29 Y9 L)

b) 8(gz, X) = (93, X, R)
C) 8(q2ﬂ 0) = (q45 Oa L)
(T moves left, through ¥’s (3a). If T encounters an X while still in state
@2, there are no more 0’s to convert. T goes to state g5 to check that no

Configuration Rule used Configuration Rule used
{ v
(g0, 000111, 1) start (g1, XX0YY1,2) 3c
(g1, X(‘V)OIII, 2) 1 (qo, XX(\!)(YY1, 3) 4b
|

(g1, X06111, 3) 2a (g1, XXX%/YI, 4) 1
(g1, XOOJ{II, 4) 2a (g1, XXXY)JLI, 5) 2b
(2, XO% Y11, 3) 2c (1, XXXYY%, 6) 2b
(s, X%)O Y11, 2) 3c (g, XXXY}{Y, 5) 2c
(s, }(00 Y11, 1) 4a (g2 XXX)¢’YY, 4) 3a
(g0, X%)O Y11, 2) 4b (qa, XX)J(/YYY, 3) 3a

¥ ¥
(g1, XX0Y11, 3) 1 (g5, XXXYYY, 4) 3b

| |
Y
(g, XXOY11,4) 2a (45, XXXYYY, 5) 5a

' 4
(i, XX0YI1,5 2b (4s, XXXYYY, 6) 5a

¥ ¥
(g2, XX0YY1,4) 2¢ (g3, XXXYYY, 7 Sa
\L |
(g2, XX0YVY1, 3) 3a (g5, XXXYYYYY, 8) 5b
Fig. 6.2. Computation accepting 000111.

